Fiberbas construction and building technologies             Новицкий Александр             Переработка горных пород типа базальта в различные виды волокна, информационный сайт
   

Menu

  • Фибра Базальтовая
  • Статьи
    • Технология производства базальтового холста
    • Технология выбора базальтового сырья
    • Особенности получения химически стойкого НБВ
    • Смачивание расплавом поверхности фильерных питателей
    • Методика определения пригодности горных пород
    • Базальтовое волокно в кровельных мастиках
    • Химический и минералогический состав горных пород
    • Базальт и технологии его переработки в изделия
    • Материалы и литература, которые использовались при оформлении сайта
  • Оборудование
  • О компании МИНЕРАЛ 7
    • Информация о компании
    • Фотогалерея
    • Видео галерея
    • Партнерство
    • Обеспечение качества
  • Контакты
Фибра Базальтовая

Базальтовое волокно

Мы так мало знаем о нем, все еще впереди!

Базальт ткани

ПРИРОДНЫЙ КАМЕНЬ

Он давно на службе у человека.

Ровинг Базальтовый

БАЗАЛЬТ МНОГОЛИК

Миллионы лет без изменений

 

ХИМИЧЕСКАЯ СТОЙКОСТЬ БАЗАЛЬТОВЫХ ВОЛОКОН ДЛЯ АРМИРОВАНИЯ БЕТОНОВ

Приведены и проанализированы результаты исследований некоторых физико-механических свойств базальтовых волокон и изделий на их основе. Охарактеризованы преимущества и недостатки  базальтового волокна применяемого для армирования бетона. Обоснована целесообразность применения грубых базальтовых волокон для армирования бетонных конструкций.

 Приведено і проаналізовані результати досліджень деяких фізико-механічних властивостей базальтових волокон і виробів на їхній основі. Охарактеризовано переваги і недоліки  базальтового волокна застосовуваного для армування бетону. Обґрунтовано доцільність застосування грубих базальтових волокон для армування бетонних конструкцій.

Искусственные каменные материалы (бетоны), характеризуются  низким сопротивлением на разрыв и образованием усадочных трещин при застывании. Ликвидировать образование трещин можно несколькими способами, например, вторичным армированием, которое в конструкционном бетоне осуществляется стальной арматурой, а в плитах перекрытия — сваренным  проводом или сеткой, модифицированием вяжущего вещества с помощью полипропиленовых, стеклянных, базальтовых волокон, металлических волокон. Последний способ более прогрессивен. Он устраняет конструкционные проблемы, связанные с использованием сварной проволочной арматуры в перекрытиях, а также решает задачи ее размещения и позволяет сэкономить на приобретении металла. Например, полипропиленовое волокно  может заменить сварную проволочную сетку, предотвращающую образование усадочных трещин в бетоне. У плиты, содержащей волокно, прочность к изгибу на 2 % выше. При определенном  дозировании волокно заменяет вторичное армирование и обеспечивает пластичность бетона, но не заменяет конструктивную стальную арматуру. Основные свойства волокна  в качестве вторичного армирования — это контроль за пластическим оседанием и образованием усадочных трещин. Кроме того бетонам с использованием волокна для армирования  присущие такие свойства, как   равномерное выступание воды, повышенная устойчивость к истиранию, откалыванию и ударным воздействиям, пониженная проницаемость, повышенная долговечность в условиях замораживания-оттаивания, химическая инертность и повышенное сцепление. Вместе с тем полипропиленовое волокно имеет свои недостатки. Оно деформируется даже при небольших нагрузках растяжения, оно стареет, то есть теряет свои свойства с течением времени, так же оно горит при воздействии на него открытого пламени.

             Эти недостатки отсутствуют при применении базальтового волокна. Структура бетона с применением базальтовых волокон (базальтоцемента) близка к структуре, армоцемента с арматурой из стальных сеток. Однако базальтоцемент обладает более высокой прочностью и деформативностью, т.к. армирующий его базальт обеспечивает  более высокую степень дисперсности армирования камня и сам базальт обладает более высокой прочностью  1800 – 2500 Мпа, чем стальная сетка. Кроме того, базальтоцемент может переносить большие упругие деформации потому, что базальтовое волокно при растяжении пластических деформаций не имеет, а по упругости превосходит сталь. При твердении цементного камня образуется агрессивная среда, которая разрушает поверхность волокна, образуя при этом раковины. Прочность волокна уменьшается на 10%, но за счет образовавшихся раковин прочность сцепления камня и волокна увеличивается, таким образом прочность самого изделия возрастает. При использовании толстых волокон (более100мкм.) их прочность не изменяется.

     Изготовленное из горных пород, базальтовое волокно не вступает в реакцию с солями или красителями, поэтому бетонные растворы с добавкой волокна могут применяться и при строительстве морских сооружений, и в архитектурном и декоративном бетонах. В дорожных покрытиях волокно предохраняет бетон и арматуру от проникновения антиобледеняющих солей и агрессивных веществ, а также повышает остаточную прочность и устойчивость к замораживанию-оттаиванию, повышает шероховатость поверхности. Использование качественного бетона со специальными добавками включая, моно волоконное армирование, обеспечивают стойкость к перепадаем температур защищая от разломов, трещин и отслаивания поверхности, исключает пластические и усадочные трещины, увеличивает долговечность поверхности, края и шва, а также устойчивость к истиранию и ударам, обеспечивает раннюю прочность на сжатие, то есть прочность, которую обычный бетон приобретает только через 28 дней с момента укладки.

Главными особенностями базальтоцемента являются его высокая прочность при всех видах напряженных состояний и способность переносить большие деформации в упругом состоянии. При этом относительная деформация цементного камня без образования трещин достигает 0,7 – 0,9 %. Такая деформация в 35-45 раз превосходит предельное удлинение неармированного цементного камня, значительное увеличение деформативности и прочности цементного камня происходит за счет устранения базальтовыми волокном влияния концентрации напряжений в местах, ослабленных структурными дефектами цементного камня (раковинами, микротрещинами и т.п.).

Наиболее значительный эффект  армированного бетона  базальтовым волокном обнаруживается в балках без поперечной арматуры. Так, несущая способность наклонных сечений балок без хомутов возрастает на 45 % с увеличением процентного содержания базальтового волокна от 10 до 12,5 % и на 84 % в сравнении с аналогичным показателем балок без дисперсного армирования. При наличии поперечной арматуры влияние дисперсного армирования немного уменьшается. Несущая способность наклонных сечений комбинированно армированных базальтовыми волокнами балок увеличивается на 8-10% [1]. В то же время нагрузка трещино-образования повышается на 20-30 %, а ширина раскрытия наклонных трещин при нагрузках 0.5-0,6  от  разрушающей уменьшается в 1,5-2 раза.  Анализ результатов проведенных испытаний показал, что применение грубых базальтовых волокон наибольшее целесообразно в конструкциях, в которых хомуты устанавливают по конструктивным требованиям. При этом достигается 100%-ное снижение расхода стали, что идет на поперечное армирование. В конструкциях, которые содержат хомуты, исходя из требований трещиностойкости, использование дисперсного армирования разрешает уменьшить ширину раскрытия наклонных трещин и частично снизить расход поперечной арматуры[1].

 При использовании базальтового волокна в количестве 40% прочность изделий  из известковошлакового вяжущего на изгиб составляет 20 Мпа, на сжатие-69 Мпа. Установлено, что фазовое соединение цементного камня, армированного волокнами,  отличается от эталонной. Общее содержание цементирующих веществ большее в композиционных материалах. Наблюдается повышенная концентрация новообразований вдоль волокон армирующих элементов. Причем в армированном цементном камне гидратные фазы преимущественно формируются в кристаллическом состоянии и иглистом виде, что подтверждено и исследованиями других авторов[2].

Были проведенные опыты по определению прочности  непрерывного базальтового волокна. Измерение диаметров волокон проводили согласно ГОСТ 6943.2-79.  Результаты экспериментов пребывания базальтового волокна в синтетической жидкой фазе твердеющего портландцемента при нормальных условиях приведены в таблице 1.  Для того чтобы повысить достоверность эксперимента волокна обрабатывали горячей смесью Са(ОН)2  (табл. 2). Результаты испытаний образцов  цемента армированного базальтовым волокном  даны в таблице 3.

Результаты экспериментов подтверждают возможность использования непрерывных базальтовых волокон, а также и грубых волокон в качестве армирующих примесей в бетонных смесях для строительства. Чем меньше диаметр базальтового волокна, тем больше  снижение  его прочности в цементной среде. Наиболее интенсивно это происходит на протяжении 3-6 месяцев. Процесс снижения прочности имеет вообще затихающий характер. Самый высокий уровень потери прочности наблюдается в алюмоборсиликатних волокнах употребляемых при армировании бетонов[2].

Возможные области применения базальтового волокна: бетонные полы, взлетные полосы аэропортов, скоростные автодороги, промышленные полы в цехах, где установлено тяжелое оборудование, внутреннее армирование туннелей и каналов, укрепление склонов, ремонт и реконструкция сооружений, покрытие металлических поверхностей стальных сооружений, бетонные водные каналы, огнезащитные конструкции, военные сооружения,  сейсмостойкие дома и сооружение. Основные преимущества бетона, армированного  базальтовыми волокнами: снижение толщины бетонного слоя на половину в сравнении с обычным  бетоном, соответственно  общей стоимости строительства, уменьшение трудозатрат, связанных с установкой проволочной сетки, в коллекторах и подземных водных каналах толщина бетонного покрытия существенным образом снижается, уменьшается стоимость ремонта и обслуживания  благодаря долговечности бетона армированного волокном. Влияние на армирование бетона базальтового волокна зависит от его длины  и отношения длины к диаметру. Теоретически более длинные волокна и с большим отношением длины к диаметру лучшее, чем более короткие. Однако длинные волокна  более тяжело уложить при торкретировании бетона и они худшее распределяются в бетоне. Волокна обеспечивают трехмерное укрепление бетона в сравнении с традиционной арматурой, которая обеспечивает двухмерное укрепление. По данным  многолетних исследований НДІБК, долговечность грубого базальтового волокна в среде цементного камня составляет не менее ста лет[1]. 

Таблица 1

Прочность базальтового волокна после пребывания в синтетической  жидкой фазе портландцемента

Время обработки, час.

Диаметр базальтового волокна, мк

5

10

20

Прочность на разрыв, Мпа

МПа

%

МПа

%

МПа

%

0

0,093

100

0,105

100

0,065

100

3

0,081

87,5

0,095

90

0,064

100

24

0,081

87,4

0,092

87

0,062

95

720

0,08

86

0,077

74

0,061

93

2160

 

 

0,073

70

 

 

4320

 

 

72

68

 

 

 Таблица 2

Прочность базальтового волокна на разрыв после обработки горячей смесью Са(ОН)2.

Время обработки, час.

Диаметр базальтового волокна, мк

50

70

90

Прочность на разрыв, МПа

 

МПа

%

МПа

%

МПа

%

0

0,044

100

0,029

100

0,030

100

3

0,043

97

0,028

96

 

 

6

0,042

95

0,026

89

0,029

96,5

Таблица 3

Прочность цемента армированного базальтовым волокном.

Режим твердения образцов

Коэффициент армирования по весу,   %

 

 

Возраст образца, сутки

3

7

28

90

Предел прочности образцов на изгиб, МПа

Нормально- влажный

9-12

23

 

23

 

25

26

 

27

 

23

46

 

45

 

53

68

 

53

 

47

Пропаривание

9-12

24

 

21

 

19

25

 

23

 

22

32

 

30

 

29

33

 

39

 

30

Волокна не поддаются электрохимической коррозии, в отличие от обычной арматуры, которая является электрическим проводником и поддаётся катодному эффекту.

  

ЛИТЕРАТУРА

  1. Куртаев А.С., Сулейменов С.Т., Естемесов З.А. и др. Композиционные материалы на основе вяжущих. Киев,  АН УССР  ИПМ ,1991. С.21.
  2. Рабинович Ф.Н., Зуева В.Н., Макеева Л.В. Стойкость базальтовых волокон  в среде гидратирующих цементов.// Стекло и керамика. 2001.№12 С.12-14.
Технологического процесса получения БНВ

Некоторые аспекты технологического процесса получения НБВ  

Производство непрерывного базальтового волокна основано на плавлении в плавильном агрегате измельченного базальта, с последующим вытягиванием из полученного расплава элементарных нитей. Формирование нитей осуществляется через отверстия в фильерных пластинах....

Читать далее
Технология производства БНВ

Технология производства непрерывного базальтового волокна

Планета земля располагает богатейшими месторождениями разнообразных природных каменных материалов, выходы которых на поверхность являются в свою очередь очень красивыми, а иногда и уникальными геологическими памятниками истории...

Читать далее
Некоторые аспекты процесса получения НБВ

Бетоны армированные базальтовыми волокнами

В настоящее время сложилось два направления создания композиционных материалов: - композиты на высокомодульных волокнах (стальные, асбестовые, стеклянные, базальтовые); - композиты на низкомодульных волокнах (нейлоновые, полиэтиленовые, полипропиленовые....

Читать далее

Новости

  • Аспекты применения базальтовой фибры для армирования бетонов
  • Инжиниринг технологий производства НБВ тенденции и перспективы развития
  • Аспекты пригодности горных пород месторождений отдельных стран для производства НБВ
  • Химическая стойкость базальтовых волокон для армирования бетонов

Технология

  • Фотогалерея
  • Видео галерея

Подписка новости

Ваше имя

Ваша электронная почта

Sending ...

Загрузки

  • Технические данные по базальтовым волокнам

  

Copyright © 2021 Персональный сайт Новицкого Александра. При использовании материалов сайта размещение гиперссылки http://novitsky1.narod.ru обязательно!